Quick Answer (TL;DR)
Retrieval Precision measures the accuracy of documents retrieved by a RAG (Retrieval-Augmented Generation) system --- specifically, the percentage of retrieved documents that are actually relevant to the user query. The formula is Relevant documents retrieved / Total documents retrieved x 100. Industry benchmarks: Top-5 precision: 70-85%, Top-10 precision: 55-75%. Track this metric whenever your AI system uses retrieved context to generate responses.
What Is Retrieval Precision?
Retrieval Precision quantifies how accurate your RAG pipeline is at finding the right documents. When a user asks a question, the retrieval system searches your knowledge base and returns a set of documents to feed into the language model as context. Precision measures what fraction of those retrieved documents were actually relevant.
This metric matters because the quality of a RAG system's output is bounded by the quality of its retrieval. If the retrieval step returns irrelevant documents, the language model either ignores them (wasting tokens and latency) or --- worse --- incorporates irrelevant information into its response, producing hallucinations and inaccurate answers.
Product managers should understand that retrieval precision exists in tension with retrieval recall (finding all relevant documents). Retrieving fewer documents improves precision but may miss important context. Retrieving more documents improves recall but dilutes the context with irrelevant content. The right balance depends on your use case --- high-stakes accuracy tasks favor precision, while research and exploration tasks favor recall.
The Formula
Relevant documents retrieved / Total documents retrieved x 100
How to Calculate It
Suppose your RAG system retrieves 10 documents for a user query, and a human evaluator determines that 7 of those 10 documents are relevant to the question:
Retrieval Precision = 7 / 10 x 100 = 70%
This tells you that 3 out of every 10 retrieved documents are noise. Those irrelevant documents consume token budget, add latency, and risk confusing the language model. Improving precision from 70% to 90% can meaningfully improve both response quality and cost efficiency.
Industry Benchmarks
| Context | Range |
|---|---|
| Top-5 retrieval (enterprise knowledge base) | 70-85% |
| Top-10 retrieval (broad document corpus) | 55-75% |
| Specialized domain (legal, medical) | 75-90% |
| General-purpose web search | 40-60% |
How to Improve Retrieval Precision
Optimize Your Embedding Model
The embedding model determines how well queries and documents are matched. Evaluate multiple embedding models on your specific data --- domain-specific models often outperform general-purpose ones by 10-20% on precision. Fine-tuning an embedding model on your query-document pairs yields the best results.
Improve Chunking Strategy
How you split documents into chunks directly affects retrieval precision. Chunks that are too large contain mixed content and get retrieved for partially relevant queries. Chunks that are too small lose context. Test different chunk sizes (256, 512, 1024 tokens) and overlap strategies to find the sweet spot for your content.
Add Metadata Filtering
Pre-filter documents by metadata (date, category, source, author) before running semantic search. If a user asks about "Q4 2025 revenue," filtering to financial documents from that quarter before searching eliminates irrelevant matches and dramatically improves precision.
Implement Re-Ranking
Use a cross-encoder re-ranker to rescore retrieved documents after the initial retrieval. Re-rankers evaluate query-document pairs more carefully than embedding similarity alone and typically improve precision by 10-15% on the top results.
Build Query Understanding
Transform raw user queries into optimized retrieval queries. Expand abbreviations, resolve ambiguities, and decompose complex questions into sub-queries. A query understanding layer ensures the retrieval system is searching for the right concepts, not just matching keywords.